

## UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

| CANDIDATE<br>NAME    |                             |               |
|----------------------|-----------------------------|---------------|
| <br>CENTRE<br>NUMBER | CANDIDATE<br>NUMBER         |               |
| CHEMISTRY            |                             | 5070/42       |
| Paper 4 Alterna      | ative to Practical          | May/June 2013 |
|                      |                             | 1 hour        |
| Candidates ans       | swer on the Question Paper. |               |
| No Additional M      | laterials are required.     |               |

## **READ THESE INSTRUCTIONS FIRST**

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

Write your answers in the spaces provided in the Question Paper.

At the end of the examination, fasten all your work securely together.

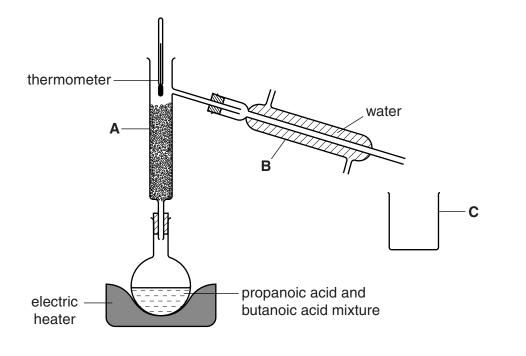
The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 16 printed pages.



https://xtremepape.rs/

1


| (d) | (i)  | Using your answers to (c)(iii) and (c)(iv) calculate the number of moles of water combined with one mole of iron(II) sulfate. | For<br>Examiner's<br>Use |
|-----|------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|     |      | moles [1]                                                                                                                     |                          |
|     | (ii) | What is the value of <b>x</b> in the formula $FeSO_4.xH_2O?$                                                                  |                          |
|     |      |                                                                                                                               |                          |
|     |      | ¥ – [1]                                                                                                                       |                          |
|     |      | <b>x</b> =[1]                                                                                                                 |                          |
|     |      | [Total: 8]                                                                                                                    |                          |
|     |      |                                                                                                                               |                          |

For Examiner's Use

[1]

2 (a) (i) Draw the structure of ethanol showing all the atoms and bonds.

A student separates propanoic acid (b.p.141  $^{\circ}\text{C}$ ) and butanoic acid (b.p.164  $^{\circ}\text{C}$ ) using the apparatus shown below.



(b) (i) The student has left out one item in setting up the apparatus. Draw this item on the diagram in the correct position.

Now that this addition has been made the apparatus is ready for the separation of the two acids. Examiner's (ii) Name apparatus A. .....[1] (iii) What is the purpose of apparatus **A**? .....[1] Apparatus **B** is a condenser. On the diagram, indicate both where water enters and (iv) where water leaves the apparatus. [1] (c) (i) What is the reading on the thermometer when the first few drops of distillate appear in C? .....°C [1] (ii) Name this distillate. .....[1] (iii) How does the student know when all of this compound has distilled over? .....[1] [Total: 12]

For

Use

In questions **3** to **7** inclusive place a tick ( $\checkmark$ ) in the box against the correct answer.

**3** A student makes an ester by warming a mixture of propanol and propanoic acid together with a small amount of sulfuric acid.

The formula of the ester is

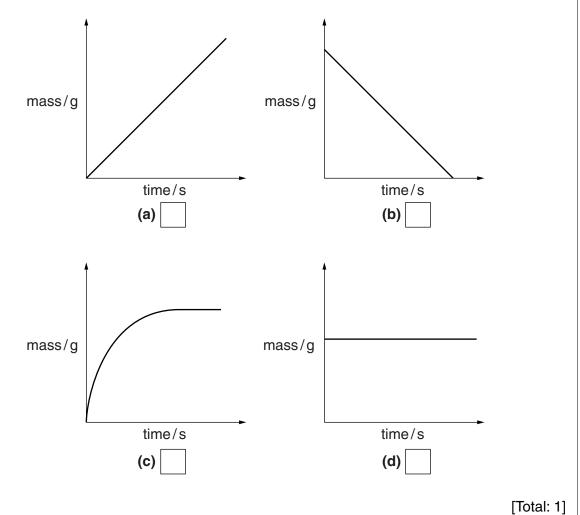
(a)  $C_2H_5CO_2C_3H_7$ (b)  $C_3H_7CO_2C_2H_5$ (c)  $CH_3CO_2C_3H_7$ (d)  $C_2H_5CO_2C_2H_5$ 

[Total: 1]

For Examiner's

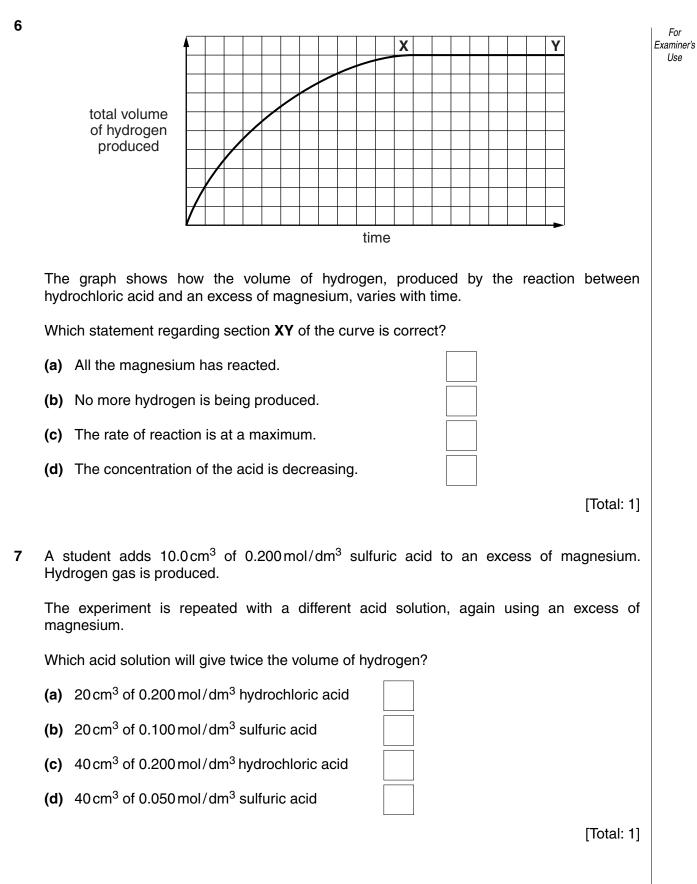
Use

- 4 Which of the following statements regarding chlorine is **not** correct?
  - (a) It bleaches litmus.
  - (b) It is a pale green gas.
  - (c) It displaces bromine from aqueous potassium bromide.
  - (d) It is produced at the cathode during the electrolysis of aqueous sodium chloride.


[Total:1]

**5** Manganese(IV) oxide, MnO<sub>2</sub>, is used as a catalyst in the decomposition of hydrogen peroxide.

For Examiner's Use


$$2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$$

Which graph is obtained when the mass of manganese(IV) oxide is plotted against time as the decomposition progresses?



© UCLES 2013

[Turn over



- 9
- A student is given a sample of a metal carbonate, RCO<sub>3</sub>.
   She is asked to determine the relative atomic mass of R and suggest its identity.
  - (a) A sample of the metal carbonate is added to a previously weighed container which is then reweighed.

mass of container +  $\mathbf{RCO}_3 = 12.01 \text{ g}$ mass of container = 10.97 g

Calculate the mass of  $\mathbf{RCO}_3$  used in the experiment.

.....g[1]

(b) The student transfers the sample of  $\mathbf{R}CO_3$  to a beaker and adds  $50.0 \, \text{cm}^3$  of  $1.00 \, \text{mol}/\text{dm}^3$  hydrochloric acid (an excess).

All the solid reacts to form an aqueous solution.

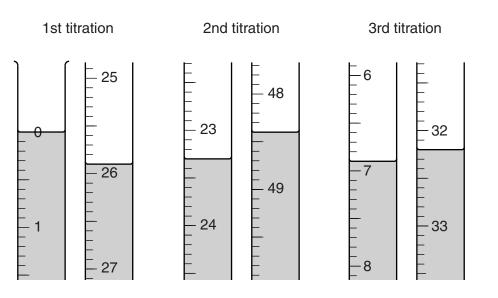
When the reaction has finished, the contents of the beaker are transferred to a volumetric flask.

The solution is made up to  $250 \text{ cm}^3$  with distilled water and mixed well. This is solution **S**.

Using a pipette,  $25.0 \text{ cm}^3$  of **S** is transferred to a conical flask and a few drops of methyl orange indicator are added.

A burette is filled with 0.100 mol/dm<sup>3</sup> aqueous sodium hydroxide which is added to the conical flask until an end-point is reached.

What is the colour of the solution in the conical flask


| (i)  | before the alkali is added, |  |
|------|-----------------------------|--|
| (ii) | at the end-point?           |  |

[1]

For

Examiner's Use (c) The student does three titrations. The diagrams below show parts of the burette with the liquid levels at the beginning and end of each titration.

10



Use the diagrams to complete the following table.

| titration number                                                          | 1 | 2 | 3 |
|---------------------------------------------------------------------------|---|---|---|
| final burette reading / cm <sup>3</sup>                                   |   |   |   |
| initial burette reading / cm <sup>3</sup>                                 |   |   |   |
| volume of 0.100 mol/dm <sup>3</sup><br>sodium hydroxide / cm <sup>3</sup> |   |   |   |
| best titration results ( $\checkmark$ )                                   |   |   |   |

## Summary:

Tick ( $\checkmark$ ) the best titration results.

Using these results, the average volume of 0.100 mol/dm<sup>3</sup> sodium hydroxide is

..... cm<sup>3</sup>. [4]

(d) Calculate the number of moles of sodium hydroxide in the average volume of 0.100 mol/dm<sup>3</sup> sodium hydroxide.

..... moles [1]

(e) Using the equation

 $NaOH + HCl \rightarrow NaCl + H_2O$ 

calculate the number of moles of hydrochloric acid in  $25.0 \, \text{cm}^3$  of **S**.

..... moles [1]

For

Examiner's Use

5070/42/M/J/13

11

| (f) | Calculate the number of moles of hydrochloric acid in 250 cm <sup>3</sup> of <b>S</b> .                                                                                        | For<br>Examiner's<br>Use |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|     | moles [1]                                                                                                                                                                      |                          |
| (g) | Calculate the number of moles of hydrochloric acid in the original $50.0  \text{cm}^3$ of $1.00  \text{mol}/\text{dm}^3$ hydrochloric acid.                                    |                          |
|     | moles [1]                                                                                                                                                                      |                          |
| (h) | By subtracting your answer in <b>(f)</b> from your answer in <b>(g)</b> , calculate the number of moles of hydrochloric acid that reacts with the sample of $\mathbf{RCO}_3$ . |                          |
| (h) |                                                                                                                                                                                |                          |
| (i) | Using the equation                                                                                                                                                             |                          |
|     | $\mathbf{RCO}_3 + 2\mathbf{HC}l \rightarrow \mathbf{RC}l_2 + \mathbf{H}_2\mathbf{O} + \mathbf{CO}_2$                                                                           |                          |
|     | calculate the number of moles of $\mathbf{R}CO_3$ that reacts with the number of moles of hydrochloric acid in your answer <b>(h)</b> .                                        |                          |
|     | moles [1]                                                                                                                                                                      |                          |
| (j) | Using your answers to (a) and (i), calculate the relative formula mass of $\mathbf{R}CO_3$ and hence the relative atomic mass of $\mathbf{R}$ .<br>[ $A_r$ : C, 12; O, 16]     |                          |
|     | relative formula mass of <b>R</b> CO <sub>3</sub> =                                                                                                                            |                          |
|     | relative atomic mass of <b>R</b> =[2]                                                                                                                                          |                          |
| (k) | ${f R}$ is less reactive than calcium but more reactive than zinc. Suggest the identity of ${f R}$ .                                                                           |                          |
|     | <b>R</b> is[1]                                                                                                                                                                 |                          |
|     | [Total: 15]                                                                                                                                                                    |                          |

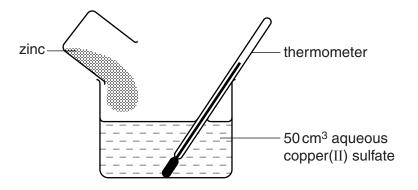
**9 M** is a compound which contains two ions.

Complete the table by adding the observation in test (a), the conclusions in tests (b) and (c) and both the test and observation for test (d).

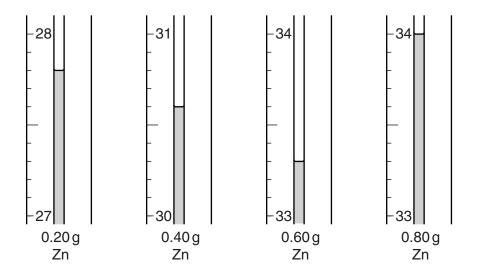
For Examiner's Use

|     |                                                                                                                                                    | test                                                                                     | observations              | conclusions                                                |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------|
| (a) | <ul> <li>(a) M is dissolved in water<br/>and the resulting solution<br/>is divided into three<br/>parts for tests (b), (c)<br/>and (d).</li> </ul> |                                                                                          |                           | <b>M</b> is probably not a compound of a transition metal. |
| (b) | (i)                                                                                                                                                | To the first part,<br>aqueous sodium<br>hydroxide is added<br>until a change is<br>seen. | white precipitate         |                                                            |
|     | (ii)                                                                                                                                               | An excess of<br>aqueous sodium<br>hydroxide is added<br>to the mixture from<br>(i).      | the precipitate dissolves |                                                            |
| (c) | (i)                                                                                                                                                | To the second part,<br>aqueous ammonia<br>is added until a<br>change is seen.            | white precipitate         |                                                            |
|     | (ii)                                                                                                                                               | An excess of<br>aqueous ammonia<br>is added to the<br>mixture from <b>(i)</b> .          | the precipitate dissolves |                                                            |
| (d) |                                                                                                                                                    |                                                                                          |                           | M contains I <sup>–</sup> ions.                            |

Conclusion: the formula of **M** is .....


[Total: 8]

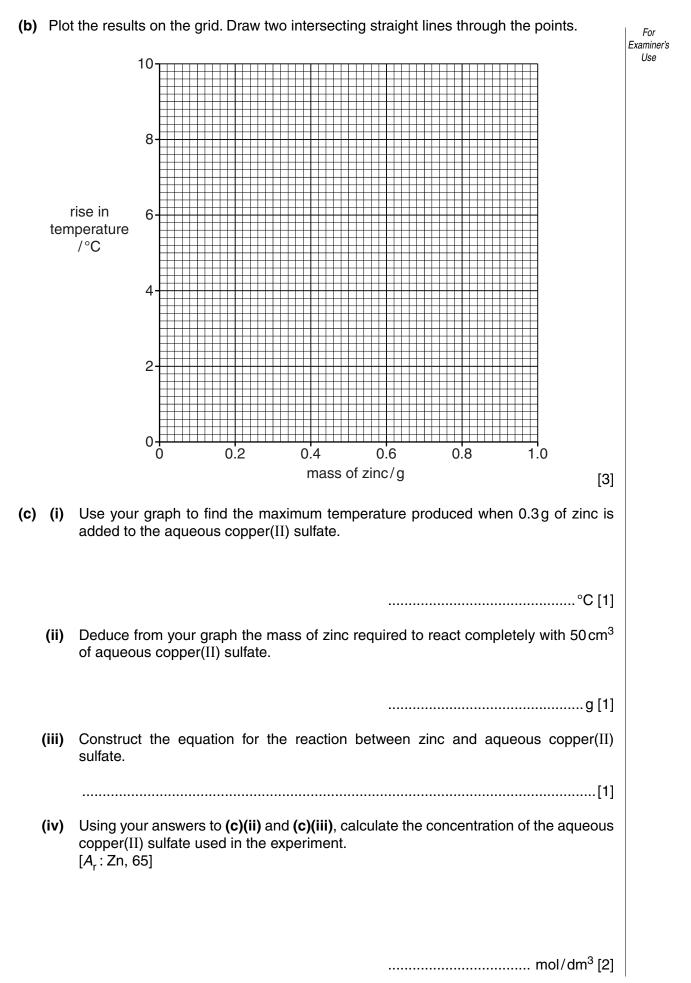
Question 10 begins on page 14.


**10** A student investigates the rise in temperature when different masses of powdered zinc are added to 50 cm<sup>3</sup> of aqueous copper(II) sulfate in a beaker as shown in the diagram below.

For Examiner's Use

In each case the initial temperature of the aqueous copper(II) sulfate is 25.0 °C.




The diagrams below show parts of the thermometer stem giving the highest temperature reached after each addition of zinc.



(a) Use the thermometer readings to complete the table below.

| mass of zinc<br>/ g | initial temperature<br>of aqueous<br>copper(II) sulfate / °C | highest temperature of<br>mixture / °C | rise in<br>temperature<br>/ °C |
|---------------------|--------------------------------------------------------------|----------------------------------------|--------------------------------|
| 0.20                | 25.0                                                         |                                        |                                |
| 0.40                | 25.0                                                         |                                        |                                |
| 0.60                | 25.0                                                         |                                        |                                |
| 0.80                | 25.0                                                         |                                        |                                |
| 1.00                | 25.0                                                         | 34.0                                   |                                |

[2]



Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.